Serveur d'exploration sur le phanerochaete

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Fungal pretreatment of lignocellulose by Phanerochaete chrysosporium to produce ethanol from rice straw.

Identifieur interne : 000626 ( Main/Exploration ); précédent : 000625; suivant : 000627

Fungal pretreatment of lignocellulose by Phanerochaete chrysosporium to produce ethanol from rice straw.

Auteurs : Jin Seop Bak [Corée du Sud] ; Ja Kyong Ko ; In-Geol Choi ; Yong-Cheol Park ; Jin-Ho Seo ; Kyoung Heon Kim

Source :

RBID : pubmed:19591194

Descripteurs français

English descriptors

Abstract

Phanerochaete chrysosporium is a wood-rot fungus that is capable of degrading lignin via its lignolytic system. In this study, an environmentally friendly fungal pretreatment process that produces less inhibitory substances than conventional methods was developed using P. chrysosporium and then evaluated by various analytical methods. To maximize the production of manganese peroxidase, which is the primary lignin-degrading enzyme, culture medium was optimized using response surface methodologies including the Plackett-Burman design and the Box-Behnken design. Fermentation of 100 g of rice straw feedstock containing 35.7 g of glucan (mainly in the form of cellulose) by cultivation with P. chrysosporium for 15 days in the media optimized by response surface methodology was resulted in a yield of 29.0 g of glucan that had an enzymatic digestibility of 64.9% of the theoretical maximum glucose yield. In addition, scanning electronic microscopy, confocal laser scanning microscopy, and X-ray diffractometry revealed significant microstructural changes, fungal growth, and a reduction of the crystallinity index in the pretreated rice straw, respectively. When the fungal-pretreated rice straw was used as a substrate for ethanol production in simultaneous saccharification and fermentation (SSF) for 24 h, the ethanol concentration, production yield and the productivity were 9.49 g/L, 58.2% of the theoretical maximum, and 0.40 g/L/h, respectively. Based on these experimental data, if 100 g of rice straw are subjected to fungal pretreatment and SSF, 9.9 g of ethanol can be produced after 96 h, which is 62.7% of the theoretical maximum ethanol yield.

DOI: 10.1002/bit.22423
PubMed: 19591194


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Fungal pretreatment of lignocellulose by Phanerochaete chrysosporium to produce ethanol from rice straw.</title>
<author>
<name sortKey="Bak, Jin Seop" sort="Bak, Jin Seop" uniqKey="Bak J" first="Jin Seop" last="Bak">Jin Seop Bak</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Life Sciences and Biotechnology, Korea University, Seoul 136-713, Republic of Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>School of Life Sciences and Biotechnology, Korea University, Seoul 136-713</wicri:regionArea>
<placeName>
<settlement type="city">Séoul</settlement>
<region type="capital">Région capitale de Séoul</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Ko, Ja Kyong" sort="Ko, Ja Kyong" uniqKey="Ko J" first="Ja Kyong" last="Ko">Ja Kyong Ko</name>
</author>
<author>
<name sortKey="Choi, In Geol" sort="Choi, In Geol" uniqKey="Choi I" first="In-Geol" last="Choi">In-Geol Choi</name>
</author>
<author>
<name sortKey="Park, Yong Cheol" sort="Park, Yong Cheol" uniqKey="Park Y" first="Yong-Cheol" last="Park">Yong-Cheol Park</name>
</author>
<author>
<name sortKey="Seo, Jin Ho" sort="Seo, Jin Ho" uniqKey="Seo J" first="Jin-Ho" last="Seo">Jin-Ho Seo</name>
</author>
<author>
<name sortKey="Kim, Kyoung Heon" sort="Kim, Kyoung Heon" uniqKey="Kim K" first="Kyoung Heon" last="Kim">Kyoung Heon Kim</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2009">2009</date>
<idno type="RBID">pubmed:19591194</idno>
<idno type="pmid">19591194</idno>
<idno type="doi">10.1002/bit.22423</idno>
<idno type="wicri:Area/Main/Corpus">000611</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000611</idno>
<idno type="wicri:Area/Main/Curation">000611</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000611</idno>
<idno type="wicri:Area/Main/Exploration">000611</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Fungal pretreatment of lignocellulose by Phanerochaete chrysosporium to produce ethanol from rice straw.</title>
<author>
<name sortKey="Bak, Jin Seop" sort="Bak, Jin Seop" uniqKey="Bak J" first="Jin Seop" last="Bak">Jin Seop Bak</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Life Sciences and Biotechnology, Korea University, Seoul 136-713, Republic of Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>School of Life Sciences and Biotechnology, Korea University, Seoul 136-713</wicri:regionArea>
<placeName>
<settlement type="city">Séoul</settlement>
<region type="capital">Région capitale de Séoul</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Ko, Ja Kyong" sort="Ko, Ja Kyong" uniqKey="Ko J" first="Ja Kyong" last="Ko">Ja Kyong Ko</name>
</author>
<author>
<name sortKey="Choi, In Geol" sort="Choi, In Geol" uniqKey="Choi I" first="In-Geol" last="Choi">In-Geol Choi</name>
</author>
<author>
<name sortKey="Park, Yong Cheol" sort="Park, Yong Cheol" uniqKey="Park Y" first="Yong-Cheol" last="Park">Yong-Cheol Park</name>
</author>
<author>
<name sortKey="Seo, Jin Ho" sort="Seo, Jin Ho" uniqKey="Seo J" first="Jin-Ho" last="Seo">Jin-Ho Seo</name>
</author>
<author>
<name sortKey="Kim, Kyoung Heon" sort="Kim, Kyoung Heon" uniqKey="Kim K" first="Kyoung Heon" last="Kim">Kyoung Heon Kim</name>
</author>
</analytic>
<series>
<title level="j">Biotechnology and bioengineering</title>
<idno type="eISSN">1097-0290</idno>
<imprint>
<date when="2009" type="published">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Alcohol Oxidoreductases (metabolism)</term>
<term>Biomass (MeSH)</term>
<term>Biotechnology (methods)</term>
<term>Culture Media (chemistry)</term>
<term>Ethanol (metabolism)</term>
<term>Fermentation (MeSH)</term>
<term>Fungal Proteins (metabolism)</term>
<term>Lignin (metabolism)</term>
<term>Oryza (metabolism)</term>
<term>Peroxidases (metabolism)</term>
<term>Phanerochaete (metabolism)</term>
<term>Plant Stems (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Alcohol oxidoreductases (métabolisme)</term>
<term>Biomasse (MeSH)</term>
<term>Biotechnologie (méthodes)</term>
<term>Fermentation (MeSH)</term>
<term>Lignine (métabolisme)</term>
<term>Milieux de culture (composition chimique)</term>
<term>Oryza (métabolisme)</term>
<term>Peroxidases (métabolisme)</term>
<term>Phanerochaete (métabolisme)</term>
<term>Protéines fongiques (métabolisme)</term>
<term>Tiges de plante (métabolisme)</term>
<term>Éthanol (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Culture Media</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Alcohol Oxidoreductases</term>
<term>Ethanol</term>
<term>Fungal Proteins</term>
<term>Lignin</term>
<term>Peroxidases</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Milieux de culture</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Oryza</term>
<term>Phanerochaete</term>
<term>Plant Stems</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Biotechnology</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Alcohol oxidoreductases</term>
<term>Lignine</term>
<term>Oryza</term>
<term>Peroxidases</term>
<term>Phanerochaete</term>
<term>Protéines fongiques</term>
<term>Tiges de plante</term>
<term>Éthanol</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Biotechnologie</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biomass</term>
<term>Fermentation</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Biomasse</term>
<term>Fermentation</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Phanerochaete chrysosporium is a wood-rot fungus that is capable of degrading lignin via its lignolytic system. In this study, an environmentally friendly fungal pretreatment process that produces less inhibitory substances than conventional methods was developed using P. chrysosporium and then evaluated by various analytical methods. To maximize the production of manganese peroxidase, which is the primary lignin-degrading enzyme, culture medium was optimized using response surface methodologies including the Plackett-Burman design and the Box-Behnken design. Fermentation of 100 g of rice straw feedstock containing 35.7 g of glucan (mainly in the form of cellulose) by cultivation with P. chrysosporium for 15 days in the media optimized by response surface methodology was resulted in a yield of 29.0 g of glucan that had an enzymatic digestibility of 64.9% of the theoretical maximum glucose yield. In addition, scanning electronic microscopy, confocal laser scanning microscopy, and X-ray diffractometry revealed significant microstructural changes, fungal growth, and a reduction of the crystallinity index in the pretreated rice straw, respectively. When the fungal-pretreated rice straw was used as a substrate for ethanol production in simultaneous saccharification and fermentation (SSF) for 24 h, the ethanol concentration, production yield and the productivity were 9.49 g/L, 58.2% of the theoretical maximum, and 0.40 g/L/h, respectively. Based on these experimental data, if 100 g of rice straw are subjected to fungal pretreatment and SSF, 9.9 g of ethanol can be produced after 96 h, which is 62.7% of the theoretical maximum ethanol yield.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">19591194</PMID>
<DateCompleted>
<Year>2009</Year>
<Month>10</Month>
<Day>22</Day>
</DateCompleted>
<DateRevised>
<Year>2015</Year>
<Month>11</Month>
<Day>19</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1097-0290</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>104</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2009</Year>
<Month>Oct</Month>
<Day>15</Day>
</PubDate>
</JournalIssue>
<Title>Biotechnology and bioengineering</Title>
<ISOAbbreviation>Biotechnol Bioeng</ISOAbbreviation>
</Journal>
<ArticleTitle>Fungal pretreatment of lignocellulose by Phanerochaete chrysosporium to produce ethanol from rice straw.</ArticleTitle>
<Pagination>
<MedlinePgn>471-82</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1002/bit.22423</ELocationID>
<Abstract>
<AbstractText>Phanerochaete chrysosporium is a wood-rot fungus that is capable of degrading lignin via its lignolytic system. In this study, an environmentally friendly fungal pretreatment process that produces less inhibitory substances than conventional methods was developed using P. chrysosporium and then evaluated by various analytical methods. To maximize the production of manganese peroxidase, which is the primary lignin-degrading enzyme, culture medium was optimized using response surface methodologies including the Plackett-Burman design and the Box-Behnken design. Fermentation of 100 g of rice straw feedstock containing 35.7 g of glucan (mainly in the form of cellulose) by cultivation with P. chrysosporium for 15 days in the media optimized by response surface methodology was resulted in a yield of 29.0 g of glucan that had an enzymatic digestibility of 64.9% of the theoretical maximum glucose yield. In addition, scanning electronic microscopy, confocal laser scanning microscopy, and X-ray diffractometry revealed significant microstructural changes, fungal growth, and a reduction of the crystallinity index in the pretreated rice straw, respectively. When the fungal-pretreated rice straw was used as a substrate for ethanol production in simultaneous saccharification and fermentation (SSF) for 24 h, the ethanol concentration, production yield and the productivity were 9.49 g/L, 58.2% of the theoretical maximum, and 0.40 g/L/h, respectively. Based on these experimental data, if 100 g of rice straw are subjected to fungal pretreatment and SSF, 9.9 g of ethanol can be produced after 96 h, which is 62.7% of the theoretical maximum ethanol yield.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Bak</LastName>
<ForeName>Jin Seop</ForeName>
<Initials>JS</Initials>
<AffiliationInfo>
<Affiliation>School of Life Sciences and Biotechnology, Korea University, Seoul 136-713, Republic of Korea.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ko</LastName>
<ForeName>Ja Kyong</ForeName>
<Initials>JK</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Choi</LastName>
<ForeName>In-Geol</ForeName>
<Initials>IG</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Park</LastName>
<ForeName>Yong-Cheol</ForeName>
<Initials>YC</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Seo</LastName>
<ForeName>Jin-Ho</ForeName>
<Initials>JH</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kim</LastName>
<ForeName>Kyoung Heon</ForeName>
<Initials>KH</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Biotechnol Bioeng</MedlineTA>
<NlmUniqueID>7502021</NlmUniqueID>
<ISSNLinking>0006-3592</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D003470">Culture Media</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005656">Fungal Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>11132-73-3</RegistryNumber>
<NameOfSubstance UI="C036909">lignocellulose</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>3K9958V90M</RegistryNumber>
<NameOfSubstance UI="D000431">Ethanol</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9005-53-2</RegistryNumber>
<NameOfSubstance UI="D008031">Lignin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.1.-</RegistryNumber>
<NameOfSubstance UI="D000429">Alcohol Oxidoreductases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.1.3.-</RegistryNumber>
<NameOfSubstance UI="C052371">glyoxal oxidase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.11.1.-</RegistryNumber>
<NameOfSubstance UI="D010544">Peroxidases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.11.1.13</RegistryNumber>
<NameOfSubstance UI="C051129">manganese peroxidase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000429" MajorTopicYN="N">Alcohol Oxidoreductases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018533" MajorTopicYN="N">Biomass</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001709" MajorTopicYN="N">Biotechnology</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003470" MajorTopicYN="N">Culture Media</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000431" MajorTopicYN="N">Ethanol</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005285" MajorTopicYN="N">Fermentation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005656" MajorTopicYN="N">Fungal Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008031" MajorTopicYN="N">Lignin</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012275" MajorTopicYN="N">Oryza</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010544" MajorTopicYN="N">Peroxidases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020075" MajorTopicYN="N">Phanerochaete</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018547" MajorTopicYN="N">Plant Stems</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2009</Year>
<Month>7</Month>
<Day>11</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2009</Year>
<Month>7</Month>
<Day>11</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2009</Year>
<Month>10</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">19591194</ArticleId>
<ArticleId IdType="doi">10.1002/bit.22423</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Corée du Sud</li>
</country>
<region>
<li>Région capitale de Séoul</li>
</region>
<settlement>
<li>Séoul</li>
</settlement>
</list>
<tree>
<noCountry>
<name sortKey="Choi, In Geol" sort="Choi, In Geol" uniqKey="Choi I" first="In-Geol" last="Choi">In-Geol Choi</name>
<name sortKey="Kim, Kyoung Heon" sort="Kim, Kyoung Heon" uniqKey="Kim K" first="Kyoung Heon" last="Kim">Kyoung Heon Kim</name>
<name sortKey="Ko, Ja Kyong" sort="Ko, Ja Kyong" uniqKey="Ko J" first="Ja Kyong" last="Ko">Ja Kyong Ko</name>
<name sortKey="Park, Yong Cheol" sort="Park, Yong Cheol" uniqKey="Park Y" first="Yong-Cheol" last="Park">Yong-Cheol Park</name>
<name sortKey="Seo, Jin Ho" sort="Seo, Jin Ho" uniqKey="Seo J" first="Jin-Ho" last="Seo">Jin-Ho Seo</name>
</noCountry>
<country name="Corée du Sud">
<region name="Région capitale de Séoul">
<name sortKey="Bak, Jin Seop" sort="Bak, Jin Seop" uniqKey="Bak J" first="Jin Seop" last="Bak">Jin Seop Bak</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhanerochaeteV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000626 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000626 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhanerochaeteV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:19591194
   |texte=   Fungal pretreatment of lignocellulose by Phanerochaete chrysosporium to produce ethanol from rice straw.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:19591194" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhanerochaeteV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Fri Nov 13 18:33:39 2020. Site generation: Fri Nov 13 18:35:20 2020